Heterogeneous terminal structure of Ty1 and Ty3 reverse transcripts.
نویسندگان
چکیده
A specific terminal structure of preintegrative DNA is required for transposition of retroviruses and LTR-retrotransposons. We have used an anchored PCR technique to map the 3'ends of DNA intermediates synthesized inside yeast Ty1 and Ty3 retrotransposon virus-like particles. We find that, unlike retroviruses, Ty1 replicated DNA does not have two extra base pairs at its 3'ends. In contrast some Ty3 preintegrative DNA molecules have two extra nucleotides at the 3'end of upstream and downstream long terminal repeats. Moreover we find that some molecules of replicated Ty3 DNA have more than two extra nucleotides at the 3'end of the upstream LTR. This observation could be accounted for by imprecise RNAse H cutting of the PPT sequence. The site of Ty1 and Ty3 plus-strand strong-stop DNA termination was also examined. Our results confirm that the prominent Ty1 and Ty3 plus-strand strong-stop molecules harbor 12 tRNA templated bases but also show that some Ty1 and Ty3 plus-strand strong-stop DNA molecules harbor less tRNA templated bases. We propose that these less than full length plus-strand molecules could be active intermediates in Ty retrotransposon replication.
منابع مشابه
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genom...
متن کاملPlus-strand strong-stop DNA transfer in yeast Ty retrotransposons.
The yeast Ty1 LTR retrotransposon replicates by reverse transcription and integration; the process shows many similarities to the retroviral life cycle. However, we show that plus strand strong-stop DNA transfer in yeast Ty1 elements differs from the analogous retroviral process. By analysis of the native structure of the Ty1 primer binding site and by a series of manipulations of this region a...
متن کاملTransposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence.
We conducted a genome-wide survey of Saccharomyces cerevisiae retrotransposons and identified a total of 331 insertions, including 217 Ty1, 34 Ty2, 41 Ty3, 32 Ty4, and 7 Ty5 elements. Eighty-five percent of insertions were solo long terminal repeats (LTRs) or LTR fragments. Overall, retrotransposon sequences constitute >377 kb or 3.1% of the genome. Independent evolution of retrotransposon sequ...
متن کاملExploring Ty1 retrotransposon RNA structure within virus-like particles
Ty1, a long terminal repeat retrotransposon of Saccharomyces, is structurally and functionally related to retroviruses. However, a differentiating aspect between these retroelements is the diversity of the replication strategies used by long terminal repeat retrotransposons. To understand the structural organization of cis-acting elements present on Ty1 genomic RNA from the GAG region that cont...
متن کاملPost-transcriptional cosuppression of Ty1 retrotransposition.
To determine whether homology-dependent gene silencing or cosuppression mechanisms underlie copy number control (CNC) of Ty1 retrotransposition, we introduced an active Ty1 element into a naïve strain. Single Ty1 element retrotransposition was elevated in a Ty1-less background, but decreased dramatically when additional elements were present. Transcription from the suppressing Ty1 elements enha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 25 11 شماره
صفحات -
تاریخ انتشار 1997